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Foreword

This Engineering Recommendation (EREC) is published by the Energy Networks Association
(ENA) and comes into effect from <Month, 2014>. It has been prepared under the authority
of the ENA Engineering Policy and Standards Manager and has been approved for
publication by the ENA Electricity Networks and Futures Group (ENFG). The approved
abbreviated title of this engineering document is “EREC S34”, which replaces the previously
used abbreviation “ER EREC S34”.
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Introduction

This Engineering Recommendation is the technical supplement to TS 41-24 (2014),
providing formulae, guidelines and examples of the calculations necessary to estimate the
technical parameters associated with Earth Potential Rise (EPR).

TS 41-24 provides the overall rules, the design process, safety limit values and links with
legislation and other standards.

1. Scope

This document describes the basic design calculations and methods used to analyse the
performance of an earthing system and estimate the earth potential rise created, for the
range of electrical installations within the electricity supply system in the United Kingdom, as
catered for in TS 41-24. Modification to the formulae and routines

may be necessary before they can be applied to rail, industrial and other systems.

5.2.  Normative references

TS 41-24 contains the main list of reference documents. Only reference documents used for
EREC S34 and not listed in TS 41-24 are shown below.

Standards publications |
BS EN 50522: 2010: Earthing of power installations exceeding 1kV a.c.

TS 41-24 (2015): Guidelines for the Design, Installation, Testing and Maintenance of Main
Earthing Systems in Substations.

BS EN 60909-3: Short-circuit currents in three-phase a.c. systems. Currents during two
separate simultaneous line-to-earth short-circuits and partial short-circuit currents flowing
through earth

Other publications

To be added later
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6.3.  Terms and definitions

3.1 Symbols used

Symbols or a similar naming convention to BS EN 50522 have been used and they are set
out in Appendix A. Where these differ from the symbols used in earlier versions of this
document, the previous symbols are shown alongside the new ones, to assist when checking
previous calculations and formulae.

3.2 Formulae used for calculating earth installation resistance for earthing studies

The most common formulae for power installations are included in Appendix B. These are
generally used to calculate the resistance of an earth electrode system comprising of
horizontal and/or vertical components or potentials at points of interest.

When using formulae, to calculate earth resistances, caution is necessary, because they do
not normally account for proximity effects or the longitudinal impedance of conductors.

For first estimates, the overall impedance & of separate electrodes with respect to reference
earth, is taken as the sum of their separate values in parallel. For the example shown in
Figure 3.1, this would be:

p p

. P .
© ¥ 5 & F

(see Appendix A for description of symbols used)

In reality, & will be higher if the separate electrodes are close enough that there is significant
interaction between them (proximity effect).

Proximity effects can be accounted for in most advanced software packages. When relying
on standard formulae, the following techniques can help to account for proximity when
calculating @ :

1 Include any radial electrodes that are short in relation to the substation size, into the
overall calculation of the earth grid resistance.

1 For radial spur electrodes or cables with an electrode effect, assume the first part of its
length is insulated over a distance similar to the substation equivalent diameter.
Calculate the earth resistance of the remainder of the electrode/cable and add the
longitudinal impedance of the insulated part in series.

1 For a tower line, assume that the line starts after one span of overhead earthwire (the
longitudinal impedance of this earthwire/span would be placed in series with the tower
line chain impedance).

A value of solil resistivity is needed and for the formula in Appendix B, this must be a uniform
equivalent (see TS 41-24, Section 8.1.) For soils that are clearly of a multi-layer structure
with significant resistivity variations between layers, the formulae must be used with caution
and it is generally better to use dedicated software that accounts for this to provide results of
the required level of accuracy.

Commented [DC3]: ES not Es
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3.3 Description of system response during earth fault conditions

(1 = fE) 3[0
—>— Source

M
w (AAK

S

ZCHl ZCH2

Rer

Reference Earth
Figure 3.1 Earth fault at an installation which has an earthed tower line supply

The arrangement shown in Figure 3.1 is based upon the example described in BS EN 50522
and will be explained and developed further in this document. The EPR is the product of
earth electrode impedance and the current that flows through it into the soil and back to its
remote source. The description below is to show how the fault current and associated
impedances are dealt with to arrive at the components that are relevant to the EPR.

The installation is a ground-mounted substation that is supplied or looped into an overhead
line circuit that is supported on steel towers and has an over-running earthwire. In this
simplified example,

and each tower line supports only one (three phase)
circuit.

The fault condition is a high voltage phase insulation failure to earth within the substation. It
is possible to model this situation with computer software such that all of the effects are
summated, calculated and results presented together. For traditional analysis in this
standard, the effects are coupled as now described.

The total earth fault current at the point of fault (O) that will flow into the earth grid and
associated components would be reduced initially by two components.

1 The first component is that passing through the transformer star point earth connection
('O) and returning to source via the unfaulted phase conductors.

The total current excluding the O

component is normally calculated by summating the currents in all three phases (3'0

vectorially . The process is further described in Case Study 4. For
lower voltage distribution systems, "Ois normally zero or sufficiently low to be ignored in
calculations.

1 The second reduction is due to coupling between the faulted phase and continuous
earth conductor (see 4.3 below.) This part of the current is normally pre-calculated for
standard line arrangements or can be individually calculated from the support structure
geometry, conductor cross section and material. A similar procedure is followed for a

Commented [DC4]: U-should beUg; label currents ¢n and
le. Change #sto les
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buried cable . Another
approach is to use a reduction factor (termedi ) based on the specific circuit geometry

and material.

Once these components have been removed, the situation is shown in Figure 3.2. The earth
current (O) is treated as flowing into the earth network, which in this example contains the
substation earth grid (resistance'Y ) and two ‘chain impedances’, of value & and &
The two chain impedances are each a ladder network consisting of the individual tower
footing resistance 'Y in series with the longitudinal impedance of each span of earthwire.
They are treated as being equal if they have more than 20 similar towers in series and are in
soil of similar resistivity. The overall impedance of the electrode network is ¢ and the current
('O) flowing through it creates the Earth Potential Rise (Y )

The analysis of the performance of the system described follows the process shown in the
design flow diagram (Appendix C.) The case studies in section 6 illustrate this process for a
number of examples of increasing complexity.

Earthing System

Ir y

Ur
Zcr1 Res Zaiz

Ies

Reference Earth

Figure 3.2 Equivalent circuit for analysis
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4. Earth fault current studies

This section describes how to use the fault current data (calculated using the methodology
set out in BS EN 60909 and guidance from TS 41-24, Section 8.2) for earth potential rise
purposes.

4.1 Earth fault current

Source earth fault current values (such as the upper limit with neutral earth resistors in place)
may be used for initial feasibility studies, but for design purposes, the value used should be
site specific, i.e. should account for the fault resistance and longitudinal phase impedance
between the source and installation.

Once the fault current is known, the clearance time for a “normal protection” operation (as
defined in TS 41-24), at this level of current should be determined and the applicable safety
voltage limits obtained from TS 41-24, Section 6. This basis of a normal protection operation
is used for the personnel protection assessment. Design measures should be included within
installations to afford a higher level of protection to personnel in the event of a main
protection failure.

For and telecommunication equipment immunity studies in distribution
systems, the steady state fault current values are normally used. At some installations,
particularly where there are significant generation in-feeds, consideration should be given to
sub-transient analysis. This is especially important where vulnerable equipment (such as a
telephone exchange) is installed close to a generation installation.

For calculation of the EPR, it is the ground return component of the fault current (O) that is of
concern. On some transmission systems, this can be greater for a phase-phase-earth fault
(compared to a straightforward phase-earth fault) and where applicable, this value should be
used for the EPR calculation.

4.2 Fault current analysis for multiple earthed systems

The methodology followed in this document assumes that the earth fault current at the
substation (possibly at a defined point in the substation) has been separately calculated
using power system analysis tools, symmetrical components or equivalent methods.
Depending upon the complexity of the study, the data required may be a single current
magnitude or the full three phase currents in all supply circuits in vector format.

4.3 Induced currents in parallel conductors

The alternating current that flows in a conductor (normally a phase conductor) will create a
longitudinal emf in conductors that lie in parallel with it. These are typically cable metal
screens (lead sheath, steel armour or copper strands), earthwires laid with the circuit, metal
pipes, traction rails or the earthwires installed on overhead lines. This emf will increase from
the point of its earth connection as a function of the length of the parallelism and other
factors (such as the separation distance.) If the remote end of the parallel conductor is also
connected to earth, then a current will circulate through it, in the opposite general direction to
the inducing current.

The current that flows (returns) via the cable sheath or earthwire during fault conditions can
be large and it has the effect of reducing the amount of current left to flow into the ground via
the electrode system, resulting in a reduced EPR on it.

The following methods to account for these return currents.

Commented [DC7]: Check for consistencyf terminology
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4.3.1 Simple circuit representation for initial estimates

For an overhead line with a single earthwire, or a single cable core and its earth sheath, the
formulae below approximate the ground return current ("O).- The main assumption is that the
circuit is long enough such that the combined value of the earthing resistances at each end
of the line are small compared with &, or for cable, small compared with i

For an overhead line:

i T . o i

O QO O whereQ p o

Appendix E gives calculated values of O presented as a percentage value of 'O and phase
angle with respect to O for a range of the most commonly used overhead line constructions
at 132 kV, 275 kV and 400 kV.

For a single core cable:
. . i
© Q0 O whereQ T

The equations are not sufficiently accurate for short circuits (less than 1km) and the results
are sensitive to low values of terminal resistance.

4.3.2 More realistic circuit representation to improve the accuracy of calculations

More complete are presented in Appendix D. They require a number of
circuit and cable specific factors to provide sufficiently accurate results. These have been
included in Table A4.1 (Appendix D), for a representative sample of cables.

The case studies have been selected
to show how to use the for a range of
different scenarios. The generally provide results that are
conservative, because parallel circuit earthwires or cables are not included in the circuit
factors. The parallel earthwires or cables can be included in the circuit factors and their use
in the formulae of Appendix D will then provide more accurate results.

Where single core cables are used for three phase circuits, the calculations are based upon
them being installed in touching trefoil formation, earthed at each end. Where the cables are
not in this arrangement, the results may be optimistic and correction factors need to be
considered, (see. 4.3.3 and Appendix H.)

The| eq are sufficiently accurate for use at
11kV and 33kV on radial circuits. Circuit factors have not been included for 66kV cables
because so little of this is present within DNOs, typically only for initial lengths of
predominantly overhead line circuits. First estimates for these cables can be made using a
similar 33kV cable.

At 132kV, the are sufficiently accurate for
use in feasibility studies, especially for single end fed “all cable” circuits. They should
normally provide conservative results. This is because the circuit factors calculated are for
the cable construction that provides the highest ground return current, due for example to
having the highest longitudinal sheath impedance and/or weakest mutual impedance
between the faulted and return conductors. This would result from a cable with the smallest
cross section area of sheath or the least conductive material (such as all lead rather than
composite, aluminium or stranded copper) and thicker insulation (older type cables which
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subsequently have a slightly weaker mutual coupling between the core and sheath.). If
further refinement or confidence is required, the circuits should be modelled with the
appropriate level of detail and the work would normally show that a lower ground return
current is applicable (i.e. more current returning via the cable screens or metallic routes.)

The formulae and calculation cater for simple overhead line circuits where there is
no associated earthwire. For steel tower supported circuits that have an over-running
earthwire, account is made of the induced current return by using the table in Appendix E.

ircuits that contain both underground cable and earthed overhead tower line
construction are not presently and need to be analysed on a site
specific basis.

4.3.3 Amending calculations to account for increased ground return current in single
core circuits that are not in flat or trefoil touching arrangement

The fault current analysis routines for single core cable have assumed that the cables are
earthed at each end and in touching trefoil formation.

In many practical situations, the cables are separated by a nominal , either
deliberately (to reduce heating effects) or inadvertently (for example when installed in
separate ducts.)

When the distance between the individual cables is increased, the coupling between the
faulted and other two cables is reduced. This in turn results in more current flowing through
the local electrodes (Rs and Ra) and an increase in the EPR at each point.

Some fault current studies for 11kV and 132kV cables where the cables are in touching
trefoil, touching flat or the spacing is 3 x D (i.e. 3 x the cable diameter) are included in
Appendix H.

These show that, compared to touching trefoil, the ground return current component
increases for the other arrangements as:

1 The cable length increases
1 The cable screen cross sectional area (or conductivity) increases

For a flat arrangement or 3 x D spacing, the ground return current is seen to increase by up
to about 6% to 7%. Accordingly, if the cables are not touching, the ground return current and
EPR may be adjusted by this amount or a more accurate amount deduced from the
information in Appendix H or more detailed site specific analysis. If this effect is not
accounted for, the results will be optimistic.
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8.5.  Calculations associated with external and internal impact of the EPR

5.1 Calculation of external impact zones
5.1.1 Potential contours, such as hot zone

The EPR at the substation creates potentials in the soil external to the substation and equation
P7 in Appendix B can be used to provide an estimate of the distance to the contour of interest.

The formula is as below:

Where @ is the distance to the point from the edge of the grid to where the voltage is @, and
A is the area of the grid in square metres.

As emphasised elsewhere in this document, this and other formulae are restricted in
accuracy by their assumptions of a symmetrical electrode grid and uniform soil resistivity.
More accurate plotting of contours is possible using computer software or site
measurements.

5.1.3 External step potential

The step potential is the potential difference between two points that are 1m apart. This can
be derived as the difference in calculated surface potential between two points that are 1m
apart (Appendix B Formula P5.)

» N N ”

A PR i N
A ——I where i —
w TY

i

o
b~

i,
&
5.2 Calculation of touch potentials
Formulae are provided in Appendix B to provide the following:
External touch potential at the edge of the electrode (separately earthed fence) — P1.
External touch potential at the fence (separately earthed fence) — P2.

External touch potential at fence where there is no external perimeter electrode
(bonded fence arrangement) — P1.

External touch potential at fence with external perimeter electrode 1m away (bonded
fence arrangement) — P3.

Touch potential within substation (under lconsideration.)
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5.3 Transfer potential to LV systems where the HV and LV earthing are separate.
5.3.1 Background

This issue predominantly concerns distribution type substations (typically 11kV/LV in the UK)
where the HV and LV earthing systems are separate. Another application is where an LV
earthing system is situated within the zone of influence of a Primary Substation with a high
EPR. Previous guidance was based upon the presence of a minimum ‘in ground’ separation
between the two electrode systems being maintained (distances of between 3m and 9m
have historically been used in the UK). Operational experience suggested that there were
fewer incidents than would be expected when the separation distance had been encroached
on multiply earthed (i.e. TNC-S or PME arrangements). Theoretical and measurement
studies

showed that the minimum separation
distance is a secondary factor, the main ones being the size and separation distance to the
dominant or average LV electrode (where there are many small electrodes rather than one or
a few large ones). We refer to this as the ‘centre of gravity’ of the LV electrode system.

Basic theory

Equations are available Appendix B (P6) to calculate the surface potential a given distance
away from an earth electrode. Three different electrode shapes are included as follows:

A hemispherical electrode at the soil surface

bya) A vertical earth rod
e)b) An earth grid — approximated to a horizontal circular plate.

The surface potential calculated at a point using these formulae is equal to the transfer
potential to a small electrode located at that point because an isolated electrode would
simply rise to the same potential as the surrounding soil.

When two or more electrodes are connected together, previous investigations have shown
that the transfer potential on the combined electrode is an ‘average’ of the potentials that
would exist on the individual components. This ‘average’ was found to be ‘skewed’ towards
the surface potentials on ‘dominant’ electrodes, i.e. those having a lower earth resistance
due mainly to being larger.

A simple method is required to explain and then account for this ‘averaging’ effect. Figure 5.1
shows a simple arrangement of a HV earth electrode and two nearby LV earth rods (A and
B) which are representative of typical PME electrodes. |
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The three electrodes are located along a straight line and the soil surface potential profile
along this route is also approximated in the figure.

LV LV
HV Electrode Electrode

i B

Soil
Surface
Potential

A7} R N

Vs

Distance

Figure 5.1 Surface potential near a simple HV and LV electrode arrangement

When there is an EPR (Earth Potential Rise) on the HV Electrode the LV Electrodes, A and B
will rise to the potential of the local solil, i.e. the surface potential. In Figure 5.1, these are
defined as Va and Vs. The LV Electrodes are clearly at different potentials and this depends
on the distance away from the HV electrode.

Once A and B are connected together (for example by the sheath / neutral of an LV service
cable) the potential on them will change to an ‘average’ value, between VA and VB. In simple
cases where A and B are of a similar size (and hence earth resistance in soils of similar
resistivity), the average potential is accurate but where electrodes A and B are of significantly
different sizes the ‘average’ is ‘skewed’ towards the dominant one (the larger one, i.e. that
has the lowest earth resistance).

The ‘averaging’ effect can be explained by considering an equivalent circuit for the combined
LV electrodes as shown in Figure 5.2. V4 and Vg are the local soil surface potentials and VT
is the overall potential on the combined LV electrode. Electrodes A and B have earth
resistances of Ra and Rg respectively.

Vr
LV ® LV
Electrode Electrode
A B
Ra Rs
Va Vs

Figure 5.2 Equivalent Circuit for Combined LV Electrodes A & B
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The circuit is a potential divider and the voltage on the combined LV electrode (V1) can be
expressed by:

)

If the LV electrode earth resistances are equal (Ra = Rs) then this equation reduces to Vr =
(Va + Vg)/2, i.e. the average of the two potentials.

5335.3.2
(a) Equal LV Electrode Earth Resistances

Examples

|t is useful to consider a worked example where assumed typical values have been used in
the circuit from Figure 5.2 and the transfer voltage has been calculated. Figure 5.3 shows
the circuit together with the calculated parameters.

V1 =150V
LV PY LV
Electrode Electrode
A 5A B
Ra=10Q 50V Re =10Q 50V
Va =200V Ve = 100V

Figure 5.3 Example — Two Electrodes of Equal Resistance]

From Figure 5.3, the surface potential experienced by electrodes A and B effectively act as
voltage sources. Because electrodes A and B are connected together via an above ground
conductor (assumed to have negligible resistance compared to the earth resistances) the
potential difference of 100V across the total series resistance of 20Q causes a current of 5A
to circulate through the electrodes. This creates a voltage drop of 50V across the earth
resistance of A which is negative with respect to the local surface potential. This reduces the
local electrode potential (by 50V with respect to the local soil potential). Conversely at
electrode B there is a 50V potential drop across the earth resistance which increases the
electrode potential by 50V with respect to the local soil potential.

This is consistent with the previous work and explains the changes in surface potential
contours around combined LV electrodes.
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(b) Unequal LV Electrode Earth Resistances

Figure 5.4 shows a similar example but where Electrode B has an earth resistance 5 times
lower than Electrode A.

Vr=116.7V
Lv P LV
Electrod
EIechode 8.3A 8.3A ECBTO €
Ra=10 Re = 2Q 16.7V
Va =200V Vs = 100V

Figure 5.4 Example - Two Electrodes of Unequal Resistance

It can be seen that the potential on the combined LV electrode is much lower than the
average value of 150V. Because Electrode B has a much lower resistance it has a smaller
volt drop across it and so the combined electrode potential is closer to the voltage on
Electrode B.

(c) More than Two LV Electrodes

A similar calculation process can be applied to combinations of more than two LV electrodes.
The equation below provides the combined electrode potential for three electrodes, A, B & C.

w

The equation below allows a similar calculation to be made for four combined LV electrodes,
A, B,C&D.

w

Further equations for more than four combined LV electrodes can easily be produced by
continuing this pattern and would be best implemented via a computer programme
subroutine loop.

5:3-45.3.3 Discussion

This method has been found to provide a conservative estimate of transfer potential to LV
earthing systems when the HV earth resistance is reasonably accurate, ideally determined
by measurement. If calculated, conservative results are obtained if the equation for the earth
resistance of a hemispherical electrode is used.

The above method may also be applied to a horizontal electrode which may be represented
as a series of equally distributed vertical rods along its route. The coarsest representation is
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to model the horizontal electrode as two short vertical rods, the first at the point on the
electrode nearest the HV electrode and the second at the furthest point. This method
provides a conservative estimate of the transfer potential to the LV electrode. The greater
number of rods used to model the horizontal electrode, the more accurate the calculated
transfer potential becomes.

The method described above has been found to be reasonably accurate (and conservative)
for soils with uniform resistivity and those where there is a lower resistivity deeper layer.
Care should be taken when applying to soils where there is a high resistivity deeper layer,
e.g. underlying rock, as transfer potentials may be underestimated and additional safety
factors may need to be applied.

Where there is a distributed HV electrode system, e.g. where there are extended HV cables
with bare sheaths in contact with the soil, the accuracy of this approach will depend on the
location of the LV electrodes relative to the HV electrode. The approach may be valid if the
LV electrodes are in the opposite direction to the HV electrode otherwise the transfer
potential will need to be calculated by more detailed methods.

For detailed analysis of complex HV or LV electrode shapes and highly non-uniform soil
resistivity structures the use of computer simulation software will be required.

Application to real systems

The fact that the transfer potential is governed by the distance to the ‘centre of gravity’ of the
LV electrode system from the HV electrode has now been established, can help with the LV
electrode design to minimise transfer potential. From this perspective, the best method is to
install dominant parts of the LV electrode system as far as practicable from the HV electrode,
i.e. towards the extremities of the LV system.

Worked example
Arrangement 1: Pole-Mounted 11kV/LV [Substation

A typical pole-mounted 11kV substation arrangement is shown in Figure 5.5. The HV and LV
earthing systems are separated; in this example the transformer LV neutral/earth electrode is
located 9m away from the transformer HV earth electrode. A service cable provides an LV
supply to a dwelling located 50m away from the HV earth electrode and there is a LV PME
earth electrode at the property.
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47  The HV Earth Electrode is assumed to be a 3.6m earth rod of 16mm diameter and the soil
48  resistivity is assumed to be 75Qm,
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by

Lo
.4 Lo N/E
—L = HVEARTH L LV EARTH —  LVEARTH
— ELECTRODE — ELECTRODE 1 —  ELECTRODE 2
b om o 41m g

50 Figure 5.5 Example Pole-Mounted 11kV Substation Arrangement and LV Supply to a
51 Dwelling

52  Using Formula R1 from Appendix B, the HV electrode earth resistance is calculated to be
553  21.5Q. An earth fault current of 200A is assumed to flow and is assumed to be disconnected
554  in1s. The calculated EPR on the HV electrode is 4300V.

B55  The Surface Potential 9m away from the HV electrode can be calculated using Equation P6.2
556  as 259V and would be experienced by LV Earth Electrode 1. In the absence of any additional
557 LV earth electrodes this voltage would be propagated through the LV neutral/earth conductor
558 and may be experienced as a Touch Voltage by the dwelling occupants. This potential
559  exceeds the permissible Touch Voltage limit for 1s of 233V and so would not be acceptable.

F60  Figure 5.5 shows a second LV electrode (LV Earth Electrode 2) located at the dwelling that is
561 50m away from the HV electrode. Use of Equation P6.2 provides a calculated Surface
562  Potential of 48V that would be experienced by LV Earth Electrode 2.

F63  Because LV Earth Electrodes 1 and 2 are connected via the LV neutral/earth conductor, and
564  assuming they each have a similar earth resistance, the transfer potential on the LV earthing
565 system (both electrodes and the interconnecting conductor) will be the average of the
566  surface potential calculated at each LV electrode location, i.e. 154V which is below the
567  permissible Touch Voltage limit.

F68  If the resistance of LV Earth Electrode 2 was half that of LV Earth Electrode 1 the ‘average’
569  potential will be weighted more towards the potential at LV Electrode 2. From the equation in
570 section 5.3.3(b), the combined potential on the LV earthing system would be (259x1 +
571  48x2)/3 =118V.

F72  This rather straightforward example illustrates how the electrode arrangement can be
573  designed to significantly reduce the transfer potential.
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Arrangement 2: 33/11kV [Substation

A typical 33/11kV Substation earth electrode has been investigated in Case Study 1 and the
30m x 20m ‘Basic Grid’ had a calculated EPR of 1030V. A fault disconnection time of 0.6s is
assumed which has a corresponding permissible Touch Voltage of 420V.

For this case study it is assumed that the dwelling shown in Figure A5 is located 5m from the
33/11kV substation. Using Equation P6.3 the transferred potential to LV Earth Electrode 2 at
the dwelling, during a fault at the 33/11kV substation, is 477V. This is in excess of the
permissible Touch Voltage limit and may indicate an unacceptable risk to occupants of the
dwelling.

Using Equation P6.3 the transferred potential to LV Earth Electrode 1 (located 46m from the
33/11kV substation) can be calculated as 117V. Assuming that the two LV electrodes have a
similar earth resistance the average potential transferred to the LV earthing system during an
earth fault at the 33/11kV substation is 297V which is below the permissible limit.

Risk assessment (No Section numbers as will move to 41-24)

This is just a brief introduction and needs further development. The whole of this
section will be placed in TS 41-24 eventually.

It can be extremely expensive to control the risks of damage, shock or electrocution to levels
that are risk free. It is recognised in new standards that risks must be accepted in order to
provide electrical infrastructure to society. As set out in BS EN 50522, (BS EN 50522 : 2010 -
Earthing of power installations exceeding 1 kV a.c., 2010) risk assessment is one of the
acceptable tools for analysis of situations where the cost of removing an identified risk
appears to be disproportionately high.

When an earth fault creates a significant EPR within an installation, the following four
scenarios need to be considered:

Injury or shock to persons within the installation

At locations where a person is expected to be both working and in contact with earthed metal
(for example operating circuit breakers within a switchroom, a switching device in an outdoor
area or working on a power transformer), the earthing system must be designed to control
safety voltages such that they are below the acceptable threshold. The only unforeseeable
risks are associated with a defective earthing installation or failure of the protection
equipment. The design is expected to provide a high safety factor at such locations. For less
frequently occupied areas or intermittent tasks where the safety thresholds may be
exceeded, the risk should be managed by control measures (such as approved procedures,
permanent barriers and notices etc.) If these are still not initially deemed acceptable, the
decision on whether to carry out design improvements or accept the risk of an incident can be
aided by use of the risk assessment method described in BS EN 50522 A2. These examples
are presently quite simplistic and would need further development for widespread application.

Injury or shock to persons and animals (if applicable) outside the installation

These can be introduced by metallic transfer (fence, pipe, cable) or via the soil. Where a
transferred potential can occur due to metallically conductive means, that eventuality should
be removed by the introduction of insulation or other protective measures (examples include
insulated sections introduced into external metal fences.) Where metal fences are bonded to
the substation earthing system, the touch and step potentials external to them must be
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controlled by the design, such that they are within the acceptable limits. In other words, most
risks should be managed by design. An ideal application for risk assessment is coated type
fencing (such as expanded metal) where parts of the coating may degrade over time. Where
HV and LV earthing systems are combined, the EPR is transferred from the installation into
domestic, commercial or industrial properties and must be at a level such that there is no risk.
(We consider some research is needed to determine the threshold voltage for this from a
safety perspective (at present it is 430V — an ITU equipment limit value)). Issues include
identification of the realistic shock scenarios in a range of property types and the probability
of this occurring and risking electrocution at a range of voltage levels. Where HV and LV
systems are combined, the EPR (or part of it) will transfer to the LV system.

For potentials transferred via the soll, the risk is related to the EPR magnitude (together with
proximity of the person, animal or property to the installation), the likely presence of humans
or animals and the degree/time of exposure. If the substation has an elevated EPR, obvious
concerns are shock risk to humans who do not have appropriate footwear (beach-side or
camping site locations) and electrocution to animals (such as a horse — especially one that is
being trained/ridden at the time).

Some guidance is needed for areas within the 430V contour — i.e. are there elevated risks or
is it an irrelevant contour in relation to human safety. The situation here is related to safe
touch and step potentials, not equipment thresholds. For example — risk of shock in a house
(similar scenario to the HV/LV bonded issue at a distribution substation), risk of shock in a
field, risk of shock to a horse whilst being ridden in an adjacent field.

Damage to equipment within the installation

This is generally covered by design practice and the need to meet the requirements of
documents such as EREC S36. For example, the use of isolation units of appropriate voltage
withstand on communication and protection circuits. It would be useful to have an element of
risk guidance in this area too — for example, if the isolation equipment is matched to normal
operating conditions, what is the risk of this being exceeded?

Damage to equipment within properties outside the installation

Communication equipment issues covered by EREC S36. (S36-1 : Identification and
Recording of Hot Sites - Joint Electricity / British Telecom Procedure, 2007)

Again — some of this is covered in EREC S36 — especially for telecommunication cables and
equipment. What is less obvious is the quantified risk of damage to non-communication
equipment or items that are not apparent from an initial survey. These may include metal gas
pipes, railway signalling, equipment within farm outbuildings etc.

5.4 Risk assessment methodology

For UK electricity industry applications, the risk of ventricular fibrillation (or electrocution) is a
function of three probabilities, i.e.:

P (Probability of ventricular fibrillation) = Pr x Pe X Prs

Where

Pr : Probability of fault occurrence

Pe : Probability distribution of EPR value/Probability of exposure

Pes: Probability of body orientation to create fibrillation current
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5.5 Methods of optimising the design (first draft)
Where the EPR is sufficient to create issues within or external to the substation, the following
should be investigated and the most practicable considered for implementation.
5.5.1 More accurate evaluation of fault current

Does the value used, account for fault resistance and longitudinal circuit impedance? Have
excessive factors for future fault current growth been used? For example, it may be more
prudent to use the existing value and implement additional measures later, i.e. at the same
time as the predicted increase in fault current.

5.5.2 Reducing the overall earth impedance
Can additional horizontal electrode be incorporated with new underground cable circuits?

Has the contribution of PILCSWA type cables in the vicinity been appropriately accounted
for?
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5.5.3 Reducing the touch potential within the installation

Can rebar or other non-bonded buried metalwork be connected to the electrode system?
Can other measures (such as physical barriers or isolation) be applied to certain areas?
Are the areas of high touch potential actually accessible?
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6. Case study examples

The four cases included here are to demonstrate the increasing level of complexity involved
when moving from an unearthed overhead supplied installation with a single supply through
to a distribution or transmission installation that has several sources of supply. These also
demonstrate the new design facilities that are expected at a modern installation, together with
use of the fault current analysis formulae available with this document.

The following data will be used for the first three case studies.

All electrodes assumed as having an equivalent circular diameter of 0.01m and for simplicity,
to be copper (the electrical properties of steel would be used for the reinforcing material.)

The soil resistivity is 75Qm and the fault clearance time and fault current magnitude are set
outin Table 6.1.

Substation A

Earth resistance of 0.25Q, obtained via a reliable measurement (see TS 41-24, Section 12
and BS EN 50522, National Annex C) Only part of the site is shown in the diagram — i.e. the
complete site encloses a larger area and this results in its low earth resistance.

The 33kV earth fault current at the source is limited to a maximum of 1kA by a neutral
earthing resistor. The fault current is further attenuated by the electrode resistance at the
faulted substation and the circuits’ longitudinal impedance. In all cases the circuit is 3km long
between A and B and of 185mm? aluminum conductor. Tables 6.1 and 6.2 provide the fault
current data the case study results.

. Touch Voltage Touch Voltage
Eéee(;t{s Otgiég?gl;) Fault Current (A) Cleara?:)e Time Limit (V) Inside | Limit (V) Outside
Substation Substation

0 610 0.4 944 837
0.25 595 0.4 944 837
0.675 584 0.4 944 837
1.22 565 0.4 944 837
1.42 560 0.4 944 837
1.59 555 0.4 944 837
1.89 545 0.4 944 837
2.0 525 0.4 944 837

Table 6.1 Fault current versus case study substation earth resistance
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Electrode (Fault)
Resistance (Q)

Fault Current

(A

Clearance Time

(s)

Touch Voltage
Limit (V) Inside
Substation

Touch Voltage
Limit (V) Outside
Substation

0to2

820

0.4

944

837

Table 6.2 Fault current versus substation earth resistance (all cable circuit)
Substation B
The grid is 30m long, 20m wide and will be buried 0.6m deep.

6.1. Case Study 1 Overhead line fed 33kV substation

A new 33kV substation is being built at location B. It is supplied from substation A via an
unearthed, wood pole supported line that terminates just outside the operational boundary of
each substation. The substations are assumed to consist of just three items of plant, (HV and
LV switchgear and a power transformer), each on their own individual foundation slab. This
is the most straightforward example to study and will be used to demonstrate both the
modern design approach and methods of addressing touch potentials.

The approach used can be applied to similar arrangements at a range of voltage levels from
6.6kV to 66kV. At 6.6kV and 11kV, the substation would generally occupy a smaller area
than in the examples shown.

Substation A

Substation B

Switchgear

Switchgear Transformer

Switchgear

Switchgear

\ Commented [DC21]: Is the 820 related to zero ohms?

\ Commented [DC22]: Shift this table to Case Study 2

¥ Earth Rod

HV
Earthing
System

I ) T ) Y A Y \
HV Earthing
Earth Rods System

Figure 6.1 Supply arrangement for case study 1
(Overhead line fed substation)

0.6m deep
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6.1.1 Resistance calculations

For this case, the land area is assumed to be fixed. The first calculation assumes a minimum
earthing system consisting of a perimeter electrode between 0.5m outside the foundation
slabs and two cross members in-between the slabs (Fig.6.2.) For the next iterations, ten
vertical 3.6m rods are added (Fig.6.3) and then some horizontal rebar within each foundation

slab (Fig.6.4.)
/ / /md:p
/ 20m
v,

30m

MV Earthing
System

Figure 6.2 Substation B basic earth grid

Using Formula R4 from Appendix B, as below:

Where 0  length of buried conductor;

| ©:

0 areaof grid.

Substituting the values, as below:

v xox

T optm
Where

0 omm
I : -— P&
. Xu XU
Y V& prinm
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Adding the ten rods as below, each of 3.6m length and 16mm radius, requires the use of the
more detailed formula.

Ear!hngsy;/' / / /
0.6m deep
| | | |

Earth Rods

Figure 6.3 Substation B basic earth grid and rods

Using Formula R6 from Appendix B:
Y'Y Y

Y ¥TvY oy



742  Where:

0 length of buried conductor (176m);
0

0 area of grid (m?)

a
Y Y —a&8 p
i ®

Where b is the equivalent diameter of
the circular earth electrode or the width
of a tape electrode.

Therefore;

Pt )E)L;mc gop&wu
Yoo PXW pxmdé%_p
Y cp—?; p T8 MBI gL

PR W c& pd§

“ v < opac 0

P PR

ENA Engineering Recommendation EREC S34
Draft Issue 2 2014
Page 32

7

Y
— P Q

<

YA «Ué’
4 P

0 numberofrods 10

i Radius of equiv. hemisphere for 1 rod

Y

aand ‘Qare the rod length and diameter

®is the separation between rods

| |
&

k = factor, which is 5 for 10 rods — see
Appendix 2, formula R5

I ™ U
| - —— T8tuu
G pTm
. Xv o 4 o®
Y= a€.,'Q
¢ o TEpe P MY

Formatted: Highlight
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As can be seen, the rods have reduced the resistance from the previous
calculated resistance of 1.89Q.

For the final calculation, the rebar within the horizontal foundations have been approximated
by the symmetrical meshes shown in Figure 6.4. For simplicity it is assumed that they have
the same equivalent circular diameter as the copper conductor and the same electrical
properties (Note 1)

|
Earthing System
Re-Bar Re-Bar Re-Bar 0.6m deep

Earth Rods

Figure 6.4 Substation B earth grid with rods and rebar

The same formula (R6) and approach would be used as previously, except that the length of
conductor is increased to include the amount of rebar modelled (786m total of rebar added to
that of copper).

Using Formula R6 from Appendix B:

v YY Y
Y Y (Y
Where:
Y -
Y mn voge @
Y XV X0 g v Ll | ! mﬁ]un&uu
T pac woc’ ® m
. Xu ., .09 . X U Y oD
Y g v a € & Y
P& v T GER o pw L  om!  Cmpe P C@U
Y ﬂ?; p T® TErLUUL ¥ LI
P8 L C& PB

PB LU CX ¢ PB P8 &

This provides a slightly lower resistance of 1.42Q.
Note 1: For a more detailed analysis, the equivalent diameter of the different electrodes and their electrical properties and

orientation would be included. In the majority of cases, this would require the use of a computer simulation package. When
used, the resistance of the grid in Figure 6.4 falls to 1.22Q.
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6.1.2 Calculation of EPR

For each of the grid arrangements modelled, their resistance would be included in the fault
current flow calculation to determine the likely earth fault current, as detailed in Table 6.2.

Resistance Attenuated Fault
Arrangement Q) Current (A) EPR (V)
Basic grid 1.89 545 1030
Grid & rods 1.59 555 888
Grld,‘ rods & rebar 1.42 560 796
(using formula)
Grid, rods & rebar
(using computer 1.22 565 695
software)

Table 6.3 EPR for different grid arrangements

As can be seen from Table 6.3, addition of the rods and rebar have each reduced the
resistance and EPR, but not dramatically. The site has an EPR that exceeds the present
430V elevated EPR threshold and it is necessary to calculate the external impact, i.e., the
430V contour location etc. Similarly, if the EPR is greater than the acceptable step/touch
limit, it is necessary to calculate the safety voltages. For all subsequent calculations, the
resistance of 1.42Q will be used.

6.1.3 Calculation of external voltage impact contours

This requires use of Formula P6.3 from Appendix B (Note that calculations are in radians).
Formula P6.3 can be more usefully rearranged to provide the distance from the outer edge of
the earth grid to a set potential point in relation to the EPR that has already been calculated.

The procedure to determine the distance to the 430V contour is as below:

. 6 Tom
= | E———
w m € <%0 2 P

Substituting the values for A (600m?) and the EPR (796V), provides a distance Z of 5m.

. egmnm, T.0TM" ,
w — I Qt—— P ua
¢ Xwo

Similar calculations would be carried out for other contours of interest. It is important to note
that these calculations only apply with a reasonable degree of accuracy to a grid that is close
to a square shape and in uniform soil. For irregular shaped grids, such as one with radial
spurs, a computer simulation or actual site measurement is necessary for sufficient accuracy.
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6.1.4 Calculation of touch potentials

These calculations are included for reference purposes, but would not be needed in real
studies because the EPR is less than 2 x Urp (the permissible touch voltage of 837V to 944V
as shown in table 6.1.) | Formula P1 estimates the touch potential one metre beyond the
perimeter electrode. It is usually the case that provided the internal electrode has been
correctly designed (with sufficient meshes), the touch potential here will exceed that
anywhere within the grid area. For unusually shaped or non-symmetrical grids, computer
software tools are needed for an accurate calculation.

The calculation procedure is as below:

For simplicity, the grid without foundation rebar is used, as in Figure 6.3. A single cross
member is added later to give an initial estimate of the effect of the rebar.

6.1.4.1 External touch potential at the edge of the electrode

0Jo I J0
0
- PP, .. Q p p p
@ T8 o m a of ™

"0=0.6m, Q=0.01m,

‘O = average spacing between parallel grid conductors - 20metres
& & ¢

Where¢ =2, ¢ =4

"Q is a factor which modifies "Q to allow for non-uniform distribution of electrode current and
is given by:

5
Q) @i

Where 0 = total length of buried electrode conductor including rods if connected (176

)

0 = length of perimeter conductor including rods if connected (136 )
" =750m
‘G total current passing to ground through electrode (555 )

5 248.2V

This reduces to 224.7V when the additional central cross member along the x axis is added
(this adds 30m of electrode and provides a uniform separation between mesh conductors in
each direction of 10m:)
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For the case where there are more cross members or to account for the rebar, the additional
conductors are accounted for in the formula in a similar process to that above and will
provide a lower touch potential.

For comparison purposes, when the grids are modeled using computer software, the touch
potentials (based upon the computer calculated EPR of 695V) are:

1 Basic grid (plus rods), touch voltage maximum is 35% on the edge of the grid and 29%
inside (311V or 258V-)

1 With rebar included, touch voltage maximum is 28% on the edge of the grid and only 5%
inside (195V or 35V-)

These are all significantly lower than the touch voltage limit of 944V (Table 6.21.) Since the
EPR exceeds the TS 41-24 “hot” threshold, the site’s HV and LV earths would need to be
separate.

For comparison purposes, when the grids are modelled using computer software and with
the rebar included, the EPR is 695V, so the touch voltage maximum is 195V (28%) on the
edge of the grid and just 35V (5%) inside, demonstrating the contribution towards safety that
the rebar provides.

For the case where there are more grid cross members or to include the rebar, the additional
conductors are accounted for in the formula in a similar process to that above and will
provide a lower touch potential.

6.1.4.2 Touch potential on fence

If a metal fence is present about 2m outside the electrode system, independently earthed in
accordance with TS 41-24, then by substituting the variables into Appendix B Formula P2,
the touch voltage 1m external to the fence can be calculated and is 58V.
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6.2 Case study 2

In this example, the data is identical except that the circuit between the substations is 3km of
185mm? aluminium triplex type cable, where each cable has a 35mm? stranded copper
screen.

Substation A
Substation B

Transformer
HV Earthing Switchgear =¥ switchgear
. System
N Earth
N\, Rod
. b, 3 -
0.6m dee
Earth Rods BV P
Earthing
System

Figure 6.5 Supply arrangement for case study 2

The resistance calculations are identical to those completed for case study 1 and the initial
analysis will focus on the values that include the rebar and vertical earth rods (1.22Q
computed using software.) Ra is 0.25Q. Because the all cable circuit has a lower
longitudinal phase impedance compared to a cable and overhead line one, the earth fault
current at B is 820A and the other data is as shown in table 6.2.

The results shown in Ttable 6.4 have been obtained using the appropriate formula and the
cable data from Appendix D, table 1.

Component Value
Y 0.25W
Y 1.22W

0 3km

i) 820A
0 17.64%
i) 144.7A
EPRs 176.5V

Case study 2;, input data and results

The amount of earth fault current that returns via the cable sheaths is so significant (more
than 82%) that the current flowing through the 1.22Q substation resistance creates an EPR
of only 176V, despite the higher overall fault current. At this level, the EPR is lower than the
430V threshold (creating a “cold” site) and lower than the touch voltage limit, so no further
calculations are necessary. Sensitivity studies showed that the earth resistance at B could
increase to more than 20Q and the EPR would still be significantly lower than 430V. This
means that the need for the earth rods will be based more upon seasonal effects (such as
reliability of soil water content over the year) than a need to reduce the grid resistance.

The worst conceivable situation would involve the loss of the sheath connections co-incident
with the earth fault. This is considered an unlikely event especially for the triplex (three cable)
type circuit. The EPR would increase to about 1000V (1.22Q x 820A). However the
foundation rebar and perimeter electrode would restrict the touch voltage to just 5%, i.e. 50V,

which is much lower than the limit threshold of 944V. So the site would still be ”safe”,
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although there would now be an external zone in which the surface potential would exceed
430V.

The equations in Appendix D have been used to derive the results used, with the relevant
cable self and mutual impedances.

(NOTE: that it is considered improbable that all the current could return via the electrode as this would require all
three individual cable screens to be open circuit con-incident with the fault.)
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6.3 Case study 3
Substation A Substation B
Transformer

% Switchgear
0\

S,
" 3 ey .«
v

Earth Rods HV Earthing System

Switchgear
HV

Earthing 0.6m
System

400m
Earthwire

deep

Figure 6.6 Supply arrangement for case study 3

This is a more complex example to demonstrate the issues involved in an area where there
are towns or villages supplied from an overhead line network. This is a very common
arrangement at 11kV and the same procedure is used to analyse that, but using the 11kV
fault current routines and associated data rather than the 33kV ones used here.

The circuit length remains at 3km, with 500m of cable at each end and 2km of overhead line
in the centre. The terminal poles at C and D will have their own independent electrodes (rods
and/or buried earth wire) to achieve a resistance of 10Q for insulation co-ordination
purposes.

The resistance of substation B is the same as calculated previously. However, as is
common practice, the opportunity has been taken to install some earth wire with the
incoming cable that is connected to the earth grid. A length of 150m is assumed and this will
have a resistance that will act in parallel with that of the grid.

If modelled in computer software, the combined resistance is 0.675Q and this accounts for
proximity effects.

If software is not available, the calculation can be carried out as follows:
Resistance of radial earth wire

Using formula R7 from Appendix B, as below:

0
¢ 0" @ om

The resistance of the earth wire is 1.46Q (using the J. Endrenyi approach based on a ladder
network with distributed parameters.) (Endrenyi, J : Reliability Modelling in Electric Power
Systems, 1979), The resistance of the earth grid is 1.22 Q. In parallel, the combined
resistance (ignoring proximity effects) is:

1.46Q /1 1.22Q = 0.665Q

When proximity effects are included, by using a computer design package, the calculated
resistance value increases only slightly to 0.675Q. The corresponding earth fault current
(Table 6.1) is now 584A. These values will be used for the subsequent calculations.

As in case study 2, the formula of Appendix D and cable data in Appendix D, table 1 are
used to calculate the fault current distribution.
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Component Value
Y 10W

Y 0.675W

0 1km

K] 584A
kO] 93.6%

kO] 546.6A
EPRs 369V

Table 6.5 Case study 3, input data and results for end part of circuit
(Note that Ra is used in formula to represent Rp)

Commented [DC32]: Should this be the other way around?
As can be seen in Table 6.5, almost all of the fault current (about 94%) flows through Rg and

creates an EPR of 369V. The amount of copper conductor laid with the cable is sufficient to

provide an EPR of less than 430V. Further optimization could be carried out to reduce the Commented [DC33]: Do we need to ref 430V
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Note that the small amount of current (6.4%) that flows via the cable sheaths and through Rp
into the soil, will create an EPR of approximately 374V there.

Component Value
Y 10w

Y 0.25W
0 1km

kO] 584A

Ko} 97.4%

K] 569A
EPRA 142V

Table 6.6 Case study 3, input data and results for start part of circuit
(Note that 'Y is used in the formula to represent 'Y')

The same equation can be used to predict the EPR at the source substation and the first
pole/cable interface at C.

As can be seen from Table 6.6, the EPR at point A is only 142V, due to the lower earth
resistance there.

The EPR at locations A and B are sufficiently low that calculation of touch, step and external
impact contours are not required.
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6.4 Casestudy 4
6.4.1 Introduction

In UK transmission networks (generally operating at voltages of 132kV and above) the
System Neutral is solidly and multiply earthed. This is achieved by providing a low
impedance connection between the star point of each EHV transformer (primary) winding
and each substation earth electrode. The low impedance neutral connection often provides a
parallel path for earth fault current to flow and this reduces the amount of current flowing into
the substation earth electrode. For EPR calculations in such systems, the neutral returning
component of earth fault current must be considered. The current “split” between the
different return paths in this study is shown by red arrows in Figure 6.7 below.

Circuits entering a substation are often via a mixture of overhead and underground cables.
As explained in Section 4, a high percentage of the earth fault current flowing in an
underground cable circuit will return to source via the cable sheath if bonded at both ends
(typically 70% to 95%), whereas in an earthed overhead line circuit the current flowing back
via the aerial earthwire is a lower percentage (typically 30% - 40%). It is therefore necessary
to apply different reduction factors to the individual currents flowing in each circuit. The
individual phase currents on each circuit are required

The detailed fault current data required is normally available at transmission level from most
network modelling software packages. Any additional calculation effort at an early stage is
usually justified by subsequent savings in design and installation costs that result from a
lower calculated EPR.

This case study has been selected to illustrate:

a) Calculations to subtract the local neutral current in multiply earthed systems;

b) The application of different reduction factors for overhead line and underground cable
circuits;

c) A situation where there are fault infeeds from two different sources

6.4.2 Case Study Arrangement

Figure 6.7 shows a simplified line-diagram of an arrangement where a 132kV single phase to
earth fault is assumed at 132/33kV Substation X. Two 132kV circuits are connected to
Substation X, the first is via an overhead line from a 400/132kV Substation Y and the second
is via an underground cable from a further 132/33kV Substation Z which is a wind farm
connection. There is a single transformer at Substation X and its primary winding is shown
together with the star point connection to earth.
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958 Substation X
959
960
961 A ARC
962
963 Trete
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970 e
971 I v
972 Is “k |
973 = (/6) It
974 J——Sihstation X Earthing_System!
975 les
976
977 Fes
978 = Reference Earth
979
980 Figure 6.7 Case study arrangement
981 (Red arrows show current “split” from the fault point)
982
983 6.4.3 Case study data
984  For the single phase to earth fault on Phase A illustrated in Figure 6.7, the individual currents
985 flowing on each phase of each circuit and in the transformer HV winding are shown in Table
986 6.7. This data is typical of that from short-circuit software package used for transmission
987  studies.
Single-phase to ground fault at Substation X
" Ik"A, Angle " k"B, Angle " Ik"C, Angle
From 1k"A [KA] [deg] k"B [KA] [deg] Ik"C [KA] [deg] 3lo [KA]
Transformer (HV Side) 0.840 62.386 0.291 76.190 0.495 63.802 1.620
Substation Y 4.163 72.533 0.766 -135.761 0.598 -93.980 2.916
Substation Z 8.093 76.072 0.541 27.674 0.233 139.316 8.559
Sum of contributions " Ik"A, Angle " k"B, Angle " Ik"C, Angle
e Ik"A [KA] [deg] 1k"B [KA] [deg] Ik"C [KA] [deg]
13.071 74.074 0.000 0.000 0.000 0.000
Substation X UA, [kV] UA, [deg] UB, [kV] UB, [deg] UC, [kV] UC, [deg]
0.000 0.000 86.916 -146.069 84.262 91.344

988

Table 6.7 Case study short-circuit data
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6.4.4 Treatment of neutral current

In Table 6.7 the ‘Sum of contributions into Substation X' is the vector sum of the faulted ‘A’
Phase contributions from the two lines and the transformer and is defined as the Total Earth
Fault Current () ). The contribution shown as ‘Transformer (HV Side) represents the
transformer star-point or ‘neutral’ current () ).

The current that returns to Substations Y and Z via Substation X Earth Electrode () ) is
separate from that flowing back via the transformer neutral () ) and metallic paths (neutral
and healthy phases). It can be shown that) —) = 0) where o) is the three times the sum
of zero-sequence current on all lines connected to the substation. For each line, o) is equal
to the vector sum of the individual line phase currents,i.e.o0) =) ) ).

Table 6.8 provides the calculated 6) values for each of the two lines and their sum.

Contribution f~rom: 3lo Magnitude (kA) 3lo Angle (Deg)
Substation Y 2.916 76.9
Substation Z 8.559 74.8
Sum of Contributions from Y+Z 11.470 75.3

[ Total three times zero sequence current (3Io)]

From Tables 6.7 and 6.8 it can be seen that earth fault current magnitude of 13.07kA (as
indicated by the short-circuit package) reduces to 11.47kA once the local neutral current is
subtracted.

As a further check of this value the sum of the currents flowing on the Transformer (HV Side)
can be subtracted from the total earth fault current from the short-circuit package to arrive at
the same result, i.e. 13.071 74~ - 1.62] 65.3 = 11.471 75.37 (kA)

6.4.5 Fault current distribution

The circuit from Substation Y is via an overhead line whereas that from Substation Z is via an
underground cable. Further calculations are required to calculate the fault current distribution
between the substation electrode, tower line earthwire and the underground cable sheaths.

Table 6.9 lists the additional information assumed for this case study.

[Commented [RW35]: TEC: Title needs changing
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132kV double circuit tower line — L4

Line construction between Substations X and Y -
construction. 20 spans long.

Reduction factor for line between Substations X | 0.7081 -9~ (as per EREC S.34, Appendix
and Y E)

132kv, 3 x 1c, 300mm? aluminium
Line construction between Substations X and Z | conductor, 135mm? copper-wire screen,
XLPE insulated. 5km circuit length.

Substation Y Earth Resistance 0.1Q

Substation X Earth Resistance 0.5Q

Reduction factor for line between Substations X

and Z 0.0671 178

Table 6.9 Case study information for fault current distribution calculations

The calculated reduction factors (O) for each circuit type from Table 6.9 are applied to the Formatted: Space Before: 0 pt, After: 10 pt
three-times zero-sequence currents (o) ) on each circuit and the total ground return current
() ) calculated as shown in Table 6.10.

Contribution 3) 3) Angle r r Angle le le Angle
From: Magnitude Magnitude Magnitude (Deg)
(Deg) (Deg) kA)
(kA)

Substation Y 2.916 76.9 0.708 -9 2.06 67.9
Substation Z 8.559 74.8 0.067 178 0.565 252.8
Sum of

Contributions 11.470 75.3 1.50 66.1
from Y+Z

Table 6.10 Calculated ground return current

The total Ground Return Current magnitude () ) is shown to be only 1.5kA which is Formatted: Space Before: 0 pt, After: 10 pt
significantly lower than the short-circuit current at the fault point () ) of 13.07kA.

6.4.6 Earth potential rise

The Earth Potential Rise (EPR) can be calculated simply as the product of the Ground Formatted: Space Before: 0 pt, After: 10 pt
Return Current ) and the Earth Resistance 2 at Substation X, i.e. 1.5kA x 0.5Q =
750V
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APPENDICES

O 0w

I o m.m

Symbols used within formulae
Formulae
Earthing Design Methodology (block diagram)

Formulae for determination of ground return current for earth faults on metal
sheathed cables

Ground current for earth faults on steel tower supported circuits with aerial earthwire

Chart to calculate resistance of horizontal electrode

. Chain impedance of standard 132kV earthed tower lines

Sample calculations showing the effect on the ground return current for change in the
separation between three single core cables
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APPENDIX A — Symbols used within formulae

(Those shown in Old column were used in earlier versions of this document, but have been updated to align

with BS EN 50522:2010

System components

New

#(

&4

%'

%
%

O

%

old

CH

FT

» I v T

~N

Symbol Description

chain (or ladder) network of an overhead line earthwire with its connections to
earth via metal lattice towers along its route, or an insulated cable’s sheath that
has connections to earth via installations along its length

fault-throwing switch

installation’s grid electrode

external horizontal electrode (e.g. a copper tape, un-insulated stranded copper
conductor or a power cable with no insulated serving —i.e. PILC or PILCSWA —
that is laid direct in the soil)

plate electrode
rod electrode
line earthwire

line tower footing electrode

Electrical quantities and dimensions

0

0 0 0 0 6 0o o O

D—‘l

total earth fault current — A

component of Ir passing to ground through grid electrode — A

component of Ir that flows through the electrode network and eventually all
returning through the ground — A

reduction factor of the overhead line

current via local transformer neutral - A

component of Ir through remote transformer neutrals — A

component of [e passing to ground through external horizontal electrode — A
component of Ir returning through earthwire or cable sheath — A

component of le passing to ground through tower footing — A

screening factor of conductors carrying induced current — e.g. earth-wires, cable
sheaths

distance to point where voltage on soil is x\Vv —m

average spacing between parallel grid electrodes — m

Commented [DC36]: E should be a subscript
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New Oold Symbol Description
A Q diameter or circular electrode or width of tape electrode —m
L a cable length — km Commented [DC37]: All definition of Ls need to be looked
at
, Ir length of earth rod
, le total length of electrode (e.g. in grid)
, In horizontal electrode length
) Ip grid or loop electrode length
M p earth resistivity — Wm
0o i cable armour resistance — Wkm
0o re cable sheath resistance — Wkm
E h radius of equivalent hemisphere —m
2 resistance of single rod - W
2 R resistance of group of rods - W
2 earthing resistance at substation A
2 earthing resistance at substation B
2 Y total earthing resistance at substation — W
2 R fault resistance — W
2 Rand R,  grid electrode earthing resistance — W
2 Y external horizontal electrode earthing resistance - W
2 Roe neutral earthing resistance - W
2 Y earth plate resistance - W
2 Y tower footing resistance - W
o) S line span length — km
5¢ Ve rise of earth potential of substation —V
5,4 touch potential — V

53 step potential — V
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New Oold Symbol Description
564 prospective touch potential — V
563 prospective step potential — V
530 permissible step voltage — V
540 permissible touch voltage — V
3 earth surface potential
63 Vs voltage on the surface of the soil at point s, with respect to true earth potential — V

| : tower line earthwire impedance per km - W

cable sheath impedance This is the overall sheath and armour of 3-core cables or .

Z sheaths of 3 x single-core cables — Wkm Commented [DC38]: Is this dimension correct

| : @ chain (or ladder) network impedance — W (Referred to as Zp in BS EN 60909-3:2010) Formatted: Font: Not Italic
. L Formatted: Font: Not Italic
| : substation earthing impedance — W Formatted: Font: Not Italic
impedance to earth Formatted: Font: Not Italic
L . X i Formatted: Font: Not Italic
chain impedance (earth wire/tower footing) of the overhead line assumed to be
infinite

Yohp U Php mutual impedance between cable conductor and sheaths 1, 2 and 3 respectively
Uenc Uos ¢ of three single core cables - Wkm
Q Phao 1-? Phao

( ¢ Yophe mutual impedance between sheaths 1, 2 and 3 of three single core cables - Wkm

Uirne Uobho
G chao Yoho
Usio U PEO mutual impedance between line conductor and earthwire - Wkm
o “ mutual impedance between cable conductor and sheath of three core cables -
Uena UYpra Wkm
earthwire impedance - Wkm
| 7 angle in degrees

1039
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APPENDIX B — Formulae

Earth resistance formulae. (Note that all formulae are those from EREC S34, 1986 version,

except where noted otherwise).

Symbols are defined in Appendix A unless specifically defined in this Appendix.

Refer to for additional formula related to simple rod arrangements

that would not generally be used at distribution or power company, installations.
The formulae have been grouped as follows:-

R = earth resistance of different arrangements

C =current rating

P = potentials (surface, touch and step)

Formula R1 Rod electrode

v —Uasé% 0

¢

Formula R2 Plate electrode (mainly used for sheet steel foundations)

Y —
L|,lp

i
® Qi
where:

5
0 area,'Q depth

Formula R3 Ring electrode

—‘GS%T'
™1 Q

where:

"O=depth (m)
i =ring radius (m) -
‘Q=conductor diameter (m)

Formula R4 Grid/mesh resistance

Y= —
LS B
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1055 Formula R5 Group of rods around periphery of grid

Y m‘”%pp «

= Radius of equivalent hemisphere for 1 rod — (metres)

"Gxfactor from figure below:

N: total number of rods around periphery of grid
1056
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1057 K factor for hormula RS‘ Commented [RW40]: this can alternatively be included as
a table that can be used in spreadsheet routines

10.00 ‘ ‘

9.00

8.00

7.00

6.00

5.00

FACTOR k

4.00

3.00

2.00

1.00 +

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

1058

TOTAL NUMBER OF RODS IN HOLLOW SQUARE ARRAY - N
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1059 Formula R6 Combined grid and rods (rods on outside only)
v Y'Y Y
Y Y ¢Y
where:

'Y = resistance of grid (Formula R4)

'Y = resistance of rods — p Q| (Formula R5)

Yooy —U ¢ "??} 0

® or

where 0 = width of tape electrode (m), 0 = length of buried conductor (m), o= rod length (m)
Note : the formula only provides sensible results for generally used dimensions — in particular

for normal or rod widths/diameters.

1060 Formula R7 Strip/tape electrode

1F61 ) — See Appendix F or use the formulal: {Commented [RW41]: highlighted text is just to show
where formula came from

[ Formatted: Highlight

Y —— aéQ v [Field Code Changed

¢ 0 PH LD wo i VAQMOG

1062  The above formula is only valid up to certain lengths (the effective length) which is typically
1063 about 300m for average soil and substation applications, after which the effect of adding
1064 further length is significantly diminished due to the self impedance of the electrode that is not
1065 accounted for in Formula R7. The approximate effective lengths for a single earthwire, tape
1066  or PILCSWA cable are shown in Table 1 below. For larger cables — in particular where there
1067 are several in reasonably close proximity, computer software or a more detailed equation
1068 (such as Schwartz — IEEE80 section 14.3) should be used. The advantage of using
1069 computer software is that the extended electrode cross sectional area and material can be
1070  correctly accounted for.

| See also R9 and Table 2 for estimates of
proximity factors when electrodes are run in parallel.
Soil Resistivity Effective Length
p m
1 60
10 180
100 500
1000 1500

1071 Table A2.1 Approximate effective lengths for a single earthwire, tape or PILCSWA
1072 cable

1073
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Formula R8 Ladder networks
Long circuits. In all cases, quantities are impedances, not magnitudes.

R8.1 - Long overhead lines with earthwire, (BS EN 60909-3, 2010)

Ci ted [RW42]: here and elsewhere in this

@ 0 TR Y oto
See (BS EN 60909-3, 2010) for description of Zo. Appendix G provides calculated values of
Zcfor a traditional UK 132kV tower line.

R8.2 — Long cable circuit with distributed earthed nodes (distribution substation
electrodes) (BS EN 60909-3, 2010)

() o Tt tw

C

&

Where & = average longitudinal sheath impedance of cable/km connecting the substations
(ensure parallel value is used for single core formats such as triplex)

& = average substation earthing impedance m™Q 'Y LI
Short circuits
R8.3 — short overhead lines with earthwire (typically 5 to 20 towers)

0 6 O O o o1
O v b O o0

(NOTE: all impedances are in complex notation. Formula as provided in (BS EN 60909-3, 2010). Refer to BS
EN 60909 for descriptions of symbols because they differ from those used in this document).

For detailed calculations, a discrete ladder network (iterative) routine or computer software
should be used. The self and mutual impedance for the earthwire(s) need to be calculated,
accounting for their material, cross sectional area and the circuit geometry.

Short underground cable/substation arrangements.

The approach is as follows:

Where there a significant proportion of the cable is PILCSWA, the resistance is calculated
based entirely on this using Formula R6.

Where the majority of the cable is XLPE/EPR/Triplex etc., an approximate approach is to
treat all the substation earth resistances as being in parallel and inflate the result by 30% to
account for the longitudinal sheath impedance. This is sufficiently accurate for typical cable
lengths of 200m to 450m and low sheath impedance. If more than 6 substations are be
considered, a higher inflation amount needs to be considered. Detailed calculations will be
needed if the substation earth resistances approach 1 ohm or less, because the sheath
impedance then becomes significant.

For detailed calculations, a discrete ladder network (iterative) routine or computer software
should be used.

Appendix, text has been added to show where the formula
came from and would be removed prior to publication

[ Formatted: Highlight

[ Formatted: Highlight
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See also (BS EN 60909-3, 2010) for more details of the calculations for ladder networks,
including non-symmetrical arrangements.
Formula R9 Accounting for proximity effects

The resistance 'Y in ohms (Q) of n vertically driven rods set s metres apart may be
calculated from:

vy g
€¢* 0 Q i

Where:

is the resistivity of soil, in ohm metres (Wm);
0 is the length of the electrode, in metres (m);

3 is the number of rods;
and

/' isagroup factor where:/ ¢S - E )
NOTE: For larger values of n, | can be approximated by: | x_2 & € "Lfs—

(Source: Sunde, E.D.: Earth conduction effects in transmission systems, Dover Publications, 1967, pp75-79)

Computer software is best used to account for proximity effects where strip electrodes or
PILCSWA type cables run in parallel. An approximation of this effect can be made using
proximity factors such as those illustrated in Table A2.2 below. Strip electrodes of about
120m in uniform soil are a set distance apart. Each provides a resistance of 2Q in uniform
soil and in the absence of the effect, a parallel resistance of 1Q would be anticipated. The
table shows the higher resistance and proximity factor that applies, clearly increasing when
the electrodes are closer together.

Separation distance Overall resistance Proximity factor

m Q
1 1.57 1.57
5 1.38 1.38

10 13 1.3

20 1.22 1.22

50 1.125 1.125

100 1.07 1.07

Table A2.2 Proximity effect of electrodes run in parallel (calculated using computer
software)

Formula R10 Overall earth resistance

p p

. P P -
©» ¥ ¥y a6 & F
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1127  Formula C1 Current rating formula

1128  For fault currents which are interrupted in less than 5s the cross-section of earthing
1129  conductor or earth electrode shall be calculated from the following formula D.1 (IEC 60287 -
1130 3-1Ed 1.1b, 1999)

o
0 .. 0 I

“f o1

1132  (Source: IEC 60949, formula D1)

1131 0o

1133  where:

0 is the cross-section in mm?
‘O is the conductor current in amperes (RMS value)

o) is the duration of the fault in seconds

is a constant depending on the material of the current-carrying component; Table
0 D.1 of IEC 60949 provides values for the most common materials assuming an
initial temperature of 20°C

is the reciprocal of the temperature coefficient of resistance of the current-carrying
f component at 0°C (see Table below).

is the initial temperature in degrees Celsius. Values may be taken from (IEC 60287-
3-1 Ed. 1.1 b : 1999, Electric cables - Calculation of the current rating - Part 3-1: Sections

ko) on operating conditions - Reference operating conditions and selection of cable type, 1999).
If no value is laid down in the national tables, 20°C as ambient ground temperature
at a depth of 1m should be adopted.

‘0O Isthe final temperature in degrees Celsius

1134
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Surface potential formulael
For substations with separately earthed fence and normal buried grid depths (typically 0.6 m)

Formula P1 External touch potential at the edge of the electrode

, i3 J0 .. 0dooJo
0 aalatiniteg S B Willitniing
0 (6]
PpP..Q p p P
Q@ ¢ 8 com o of ™

"Q is a factor that allows for the effect of a uniformly distributed electrode current over the
grid and is given by:

Q = grid depth (m)
Q = equivalent diameter of conductor = Cimumferem:m conductor (m)
" = soil resistivity (Wm)
Ko) = total current passing to ground through electrode (A)
(0] = average spacing between parallel grid conductors (m)
€ & ¢
where ¢ = number of parallel grid conductors in one direction
where ¢ = number of parallel grid conductors in the other direction

"Q is a factor, which modifies "Q to allow for the non-uniform distribution of electrode current,
and is given by:

. 0
Q) @y

where
0 = total length of buried electrode conductor including rods if connected (m)
0 = perimeter length of buried electrode conductor including rods if connected (m)
KO) = total current passing to ground through electrode (A)
(0] = resulting “touch” potential or, when assessing length 0, the safe “touch”

potential from Figure 2

Commented [RW43]: these were imported from 41-24
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Formula P2 External ‘Touch’ potential at the fence

The ground current density is significantly diminished at the fence compared to that at the
edge of the grid electrode. As a result, a new factor, Q, based on a two metre separation
between fence and grid electrode, is applied in place of Q in the above formulae.

Hence:

QdQydo, ... 030300,
564 /EAi}?\_Ab—wsm -07(1

where 'Q =0.26Q
Substation with integrally earthed fence
There are two situations to be considered. The first is where the fence is situated at the

edge of the substation electrode. The second has a peripheral electrode conductor buried
half a metre below the surface, one metre beyond the fence and regularly bonded to it.

External touch potential at fence with no external peripheral electrode

(0] Et (fence) is the same as O E: grig) Using P1 as above.

Formula P3 External touch potential at fence with external buried peripheral
conductor 1m from fence

ndeaoo, ... @ Jao oo,
564 mAlAA——— WEWD —5——a
Where Q —AE —aEY ™ —aEY Y

"Qand ‘Qare as in formula P1

"Y= distance between the outermost buried grid conductor and the next nearest parallel
conductor (m)
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Formula P4 Touch voltage within grid (from IEEE80)
Notes:

Formula 16.5.1 (quite complex and has a number of correction factors)
Annex D has simpler formulae.
Formula P5 Step voltage on outside edge of grid

” "O ] ] . ‘l . ”

u — Ol OB D wherei —
V8 [ w w Y
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COLUMN

P6.1

P6.2

P6.3

ELECTRODE
DESCRIPTION

HEMISPHERE

VERTICAL ROD

BURIED GRID

CONFIGURATION

VOLTAGE ON
THE SURFACE
OF THE GROUND
AT POINT ‘S’
WITH RESPECT
TO TRUE EARTH

8.
N
e“

A OGRE-{(in radians)
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Formula P7 Calculation of specific external potential contours

i Q-%CY p

5| o

where & is the distance in metres to a point where the surface potential is & volts.

where : ; ; gnd :  , Are in metres.

0 = superficial area of grid electrode in square metres.

Y = earth potential rise in volts.

These formulae apply on the basis that the earthing installation may be treated as equivalent
to a symmetrical grid.

Substation fences are usually earthed independently from the main earthing system and may
be up to 2m from it. By using the above formulae as the “hot zone” radii, a factor of safety is
introduced when they are applied measured from the substation fence. Some discretion may
be necessary in assessing the “hot zone” radius of a substation where the fence is bonded to
the earthing installation or there is a large distance from the fence to the edge of the earthing
system.

Clearly this formula does not apply when Y is lower than the voltage contour of interest.

Obtain Basic Data (ENA TS 41-24 Ch8): A\

* Substation Plan
« Earth Fault Currents (S34 Ch..)
o e g
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1206 APPENDIX C — Earthing design methodology

1207 Obtain Basic Data (ENA TS 41-24 Ch8):
* Substation Plan
+ Earth Fault Currents (S34 Ch..)
* Fault Duration

1208

Select Earth Conductor Sizes
(ENATS 41-24 Ch8)

Use Standard Design or Apply
Standard Design Methodology to Meet
Functional Requirements
(ENATS 41-24 Ch7)

v

Existing Site or
New One Connected to
Existing Infrastructure?

Assess and Measure
Existing Earthing
(ENATS 41-24 Ch12, Ch13)

Is the Site in an
Urban Location?

Cable Fed and Carry l?eu;s i‘r)g:::iéﬁvily
Fault Current less M e
than 100042 and/or Obtain Soil Data

Produce Soil Model
Design Electrode System Based Upol
Standard Methodology (ENA TS 41-24 Ch7)
Use Soil and Electrode Parameters to Estimate
Resistance Values With Parallel Paths
(
Carry Out Fault Current
Analysis and Distribution Study
«
«

34
Obtain Ground Return Current
34

pon
S34 Ch..)
534 Ch..)
S34 Ch..)
Install Standard De: or
Use Standard Methodology __Calculate EPR (S34 Ch..)
ENATS 41-24 Ch’ and obtain Safety Limit Values (ENA TS 41-24 Ché)
Is EPR < 2x Touch
l:l Voltage Limit
Is EPR < 4x Touch
I:l Voltage Limit?
Calculate Touch Voltages
(S34 Ch..)
Implement Spe
See ENA- Ch. Is V, < Touch
Voltage Limit? l:l

FinaliselApp Does Risk Exceed

Carry Out Risk Assessment
BS EN50522 NANB
(ENATS 41-24 Ch..)

Design for Installation ALARP Level?

N
i

Install System
ENATS 41-24 Ch10

;‘ Carry Out Commissioning Measurements
" (ENATS 41-24 Ch12)

Do Measurements Agree
Reasonably With Design?

Installation Complete

Review Design Calculations
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APPENDIX D — Formulae for determination of ground return current for earth
faults on metal sheathed cables

The current in the core of a single-core cable or the unbalance of current in the cores of a
multicore cable induces a voltage in the metallic sheath/armour of the cable. If the
sheath/armour is connected to earth at each end of its length, a current will be driven through
the sheath/armour earth loop which constitutes part of the earth fault current returning from
the fault, the remainder being that returning in the ground. The quantity of current returning
in the cable sheath/armour is, inter alia, dependent on the location of the cable in the system
with respect to the source of fault current infeed and to the position of the fault as well as on
the values of the sheath/armour terminating earth resistances.

Formulae for the computation of the ground current are given below, in respect of a cable
terminated and earthed at points A and B.

la. Three-core cable (unarmoured), source of infeed at point A and fault at point B. See
diagram Fig. 7.

0 0 —— : 0 5

1b. Three-core cable (armoured), source of infeed at point A and fault at point B. See
diagram Figs. 7 and S.
~ i i 1l
[} ¥
ko) Orr—— o
B —1 0 Qo D Yoy
u

1 l 3

2a. Three-core cable (unarmoured), source of infeed beyond point A and fault beyond point
B. See diagram Fig. 9.

0 ‘0

2b. Three-core cable (armoured), source of infeed beyond point A and fault beyond point B.
See diagram Figs. 9 and 10.

o~ | [ . 'l

[N}
K©) O S
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3a. Three-core cable (unarmoured), source of infeed beyond point A and fault at point B, or
source of infeed at point B and fault beyond point A. See diagram Fig. 12.
o o ad @ 5 Y o3

3b. Three-core cable (armoured), source of infeed at point A and fault at point B, or source of
infeed at point B and fault beyond point A. See diagram Figs. 11 and 13.

~ 0 Il
" a7 Y .
(R Ypu— :
1 | | N 5 n n o N
u& T l Q L L Y U

4. Three single-core cables, source of infeed at point A and fault at point B; the cable sheaths
are referenced 1, 2, 3. See diagram Fig. 14, Evaluate sheath currents 11, 12 and 13 and
determine IEs from the following:

Yo o@ Y Yoo Y Y &g Y Qo Yoa o5 Y
Yoo&@ 5 Y Yo o@ Y Y & 5 Y O OY & 5 Y
Y o@ 5 Y Y & o5 Y Y w Yy © Yooa s Y

5. Three single-core cables, source of infeed beyond point A and fault beyond point B. See
diagram Fig. 15.

Evaluate sheath currents 11, 12 and 13 and determine lgs from the following:

e, d’} o

IMPEDANCE COEFFICIENTS ..8 © & h
ASIN 4 ABOVE 0 LR

a

6. Three single-core cables, source of infeed beyond point A and fault at point B, or source of
infeed at point B and fault beyond point A. See diagrams Figs. 16 and 17.

Evaluate sheath currents 11, 12 and 13 and determine lgs from the following:

0 @ gy

IMPEDANCE COEFFICIENTS . o @B - Y
ASIN 4 ABOVE 0 < h

a 5 Y
Y h

The parameters used in the above formulae are as given in the list of symbols shown in
Section 3.1 or as defined below.

The quantites & ;& ;& ;& are the sheath to earth self impedances at 50 Hz.

i re oaucl® AT
@ o [8) Q6
where 6 is the GMR of the sheath in metres.

The quantity Re is the resistive component of the ground return path of the sheath to earth self
impedance.
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1260 v pmnf EI

1261 n&ue-e—ds)— pm TQa

1262  The quantity 0 is the inductive component of the sheath to earth self impedance.
1263  The quantity 0 is the effective inductance of the armour wire.

m' o pnO

4 95 Tma

1265  Where 0is the thickness of the armour wire in metres.

1266 ‘Q is the internal diameter of the armour wire in metres.
1267 ‘ is the relative permeability of the armour wires
1268

1269 The quantites @ {; @ N& ; and & [ are the faulty conductor to sheath mutual
1270 impedancesand @ ;& j andd j are the sheath-to-sheath mutual impedances at 50 Hz.

-

1271 @ Q_wa pr
N @ qpa £ 5 o]

1272  where d is the centre to centre distance in metres between the conductors/sheaths.

1273 Incalculating & {; & RN& 5 and & f the value of d has been substituted for & (where &
1274  is the GMR of the sheath in metres).

1275 In the following table, the values of & and & f for three-core cables in common use are listed
1276  for an assumed value of p of 100 Wm.
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System Voltage

Impedances in Wkm for cables of Cross-sectional Area of:

Cable Type 0.1in2 185 sg mm 300 sqg mm
Zc Zmp,c Zc Zmp,c Zc Zmp,c
PILC 1.221 0.672 1.099 0.674 0.873 0.622
SWA 133247 | 1858 I 41.6™ 1 85.8™ 1 49.1~ 1 85.8™
PILC 1.228 0.686 0.999 0.667 0.858 0.656
11 KV 1 33.77 | 18588 | 14166 | 18577 | 14953 | | 8569
0.677 0.662 0.658 0.649
PICAS . _ . _ . _ . _
1 77.33 | 85.6 1 79.6 1 85.7
0.89 0.703 0.875 0.691
TRIPLEX . _ . P . _
1 51.8 I 86 I 52 1 85.92
Cable CSA 02in2 | 02inz | 18984 | 185sq | 300sq | 300sq
mm mm mm mm
PILC 0.753 0.646 0.769 0.651 0.735 0.641
SWA 15862 | 18562 I 56.4~ 1 85.7 1 60.3” 1856
0.753 0.646 0.771 0.644
PILC . | . I _
33 KV | 58.63 | 85.63 | 56.35 | 85.62
0.684 0.659 0.667 0.65
PICAS . . _ . _ . _
1 74 | 85.7 1 76.3 1 85.7
0.87 0.683 0.856 0.672
TRIPLEX . _ . _ . _ . _
1 51.8 | 85.87 1 51.5 1 85.8
Cable CSA 185 sq 185 sq 300 sq 300 sq
mm mm mm mm
PILC 0.652 0.635 0.645 0.63
SWA 176~ 1 85.6~ 1 76.7 1 85.5
TRIPLEX 0.63 0.625 0.67 0.649
(135mm? 8071 | i8548 | i7478 | i8565"
132 kv Cu screen) ’ : ' :
0.636 0.628 0.63 0.623
PICAS . _ . _ . _ . _
1 79.6 | 85.5 1 80.2 1 85.5
0.771 0.644 0.725 0.637
PILC . N I R _
1 56.35 | 85.62 I 60.98 1 85.57

1277
1278

Table A4.1 Self and mutual impedances for a sample of distribution cables

(NOTE: that in all cases the phase angle is negative)
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PILCSWA = paper insulated lead sheath covered steel wire armour
PILC= paper insulated lead sheath covered

PICAS= Paper insulated corrugated aluminium sheathed

TRIPLEX= 3 x single core cables with XLPE or EPR insulation and 35mm? stranded
copper screen/cable (11kV and 33kV) or 135mm? screen (132kV)
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APPENDIX E — Ground current for earth faults on steel tower supported circuits
with an aerial earthwire

Values of ground current Iz as a percentage of Ir and corresponding phase angle @e with
respect to I for 132 kV, 275 kV and 400 kV line constructions

; Phase Angle of Ie with
Type of Line and
Conductor Size (mm?) le as a percentage of Ir rzse%?gztsolé;gg
132 kV (L4) 0.8 -
(1 x 175) '
132 kV (L7) 636 -
(2 x 175) '
275 kV (L3) 66.9 -
(2 x 175) '
275 kV (L2) 686 178
(2 x 400) '
400 kV (L8) 0.0 176
(2 x 400) '
400 kV (L6)
69.2 179
(4 x 400)
400 kV (L9)
64.0 179
(4 x 400)
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1290 APPENDIX F - Chart to k:alculate resistance of horizontal electrode | commented [RW45]: decision to be taken on whether to
J . G update this figure or remove it
Rnendix

0’ :
%

]

\\ |

‘o 2 \\ bt

10°

EARTHING RESISTANCE OF EXTENDED EI._ECTNODG -Rp (OHMS)

107

0' 10? 103 0*
LENGTH OF ELECTRODE - L (m)

HOUREY: |
EARTHING RESISTANCE OF EXTENDED BURIED HORIZONTAL ELECTRODE (e.g. WIRE, STRIF
OR EFFECTIVELY UNINSULATED CABLE SHEATH) AS A FUNCTION OF LENGTH AND SOIL
RESISTIVITY

e



1291

1292
1293

1294
1295

1296

1297

ENA Engineering Recommendation EREC S34
Draft Issue 2 2014
Page 69
APPENDIX G — Chain impedance of standard 132kV earthed tower lines

The table below provides chain impedances for a 132kV L4 type construction with three
towers/km and a horse earthwire (approx 70mm? aluminium ACSR, to BS215 pt5 1970).

Longitudinal impedance of earthwire is 0.443 + j 0.757 ohm/km (calculated using Carson
Clem formula).

The values assume more than 20 towers in series.

re':sci)sottai\?]?:e Chain i_mpedance Chain_inlpedance
(ohm) r+jxohm Z1 ohm
1 0.543+j0.414 0.6831 37.35
2 0.737+j0.52 0.902i 35.21
3 0.886+j0.603 1.0721 34.24
4 1.012+j0.674 1.215] 33.7
5 1.122+j0.736 1.342] 33.26
6 1.222+j0.793 1.4571 32.96
7 1.314+j0.845 1.5621 32.73
8 1.4+j0.893 1.6611 32.55
9 1.48+j0.939 1.7531 32.39
10 1.556+j0.982 1.8411 32.26
15 1.89+j1.172 2.2241 31.82
20 2.17+j1.333 2.5471 31.55
25 2.42+j1.474 2.832] 31.37
40 3.039+j1.83 3.5471 31.05
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1298 APPENDIX H — Sample calculations showing the effect on the ground return
1299 current for change in the separation distance between three
1300 single core cables laid flat or in trefoil
1B01  For the studies, three representative cables were selected for 11kV and 132kV voltage Formatted: Normal, Justified, Space After: 18 pt
1302  levels. Their details are given in Table A8.1.
Operating | Cable Phase Insulation Insulation Core / Screen Reference
voltage number conductor size type thickness type + size cable code
(kV) mm? mm mm?
132 1 630 XLPE 15 Lead 132_01_12
132 2 630 XLPE 21 Lead 132_01_13
132 3 630 XLPE 15 Coplizfsw"e 132_01_17
Copper wire
11 4 70 EPR PP 11.3.sz
Copper wire
1 5 300 EPR pp35 11_225 EPR
Copper wire
1 6 300 XLPE pp70 11218
1303 Table A8.1 Technical details of cables modelled
1B04  The geometric arrangements considered are Trefoil and Flat. They are analysed on the Formatted: Space After: 18 pt, Line spacing: single
1305 basis that they are installed such that the cables are touching and again assuming they are a
1306  symmetrical distance 3 x D apart (where D is the outer cable diameter in mm). See Table
1307  A8.2 for details.
TREFOIL FLAT
N
( \ . . -
@ A AN AN
Adjacent //”\// _— ‘ ) X )
\:/ \:|:/ \:\ \»/// \,,ﬁ// \\,7/,/
‘i’ \:‘
Distance
with 3xD
1308 Table A8.2 The geometric placement of cables
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The 132kV cables were selected to show the difference that the sheath/screen configuration
makes for the same size phase conductor. One standard cable contains a tubular conductor

made of aluminum foil in addition to its stranded copper conductor. The cross-sectional view
for this cable (trefoil format) is shown in Figure A8.1.

SN
(7
:¥\§7’/L\ \

Z

Figure A8.1 Cross-sectional view for Cable 3

The circuit used to simulate the different cable arrangements and determine the effect on the
earth return current is shown in Figure A8.2

PHASE
REPRESANTATION

OF THE SUPPLY
NETWORK

Figure A8.2 Circuit used for analysis purposes

Using the circuit described, studies were carried out for each of the cables of Table 1, and
the ground return current calculated for a set range of cable lengths. For each cable, four
sets of studies were carried out, i.e. one for each physical arrangement of the individual
cables.

The results are shown in Figures A8.3 and A8.4, with the ground return current ), shown as
a percentage of the total earth fault current), .

Formatted: Space After: 18 pt, Line spacing: single

Formatted: Space After: 18 pt, Line spacing: single

Formatted: Space After: 18 pt, Line spacing: single

Formatted: Justified, Space After: 18 pt, Line spacing:
single

Formatted
Formatted
Formatted

Formatted
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58
54
_ 50 —
8\0/46
w42
5
38
34
30 ,/
26
0 2 4 6 8 10 12
Cable Length (km)
1325 Cable 1: 630mm? with 15mm XLPE, lead sheathed
26 ‘
24
22 E———
20 —
18
)
_wie
14
12 ./
10
0 2 4 6 8 10 12
Cable Length (km)
1326 Cable 2: 630mm? with 21mm XLPE, lead sheathed
16
14
12 —
S 10
—
T8
6
4
2
0 2 4 6 8 10 12
Cable Length (km)
= FLAT (3xD) ====TREFOIL (3xD) == FLAT (Adjacent) ====TREFOIL (Adjacent)|
1327 Cable 3: 630mm? with 15mm XLPE and composite screen/sheath
1328 (135mm2Cu and 45mm?2 A))

1329  Figure A8.3 Ground return current (les) as a percentage of (Ir) against circuit length for
1330 difference 132kV cable installation arrangements
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15
14 —
13 o
o 12 = — |
<1
w
=, 10
~ 9
8
7 4
6
0 2 4 6 8 10 12
Cable Length (km)
1331 Cable 4: (70mm? with 12mm? Cu screen)
15
14 -
13 VA%_
S
1
w
<, 10
-9
8
/ 4
6
0 2 4 6 8 10 12
Cable Length (km)
1332 Cable 5: (300mm? with 35mm? Cu screen)
7
6 —
5 é
= /7
Sa
w
<3
_w
2
1
0
0 2 4 6 8 10 12
Cable Length (km)
s FL AT (3XD) ===TREFOIL (3xD) === FLAT (Adjacent) ====TREFOIL (Adjacent)
1333 Cable 6: (300mm?2 with 70mm?2 Cu screen)

1334  Figure A8.4 Ground return current (les) as a percentage of (Ir) against circuit length for
1335 different 11kV cable installation arrangements
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The results show that earth return current increases when the distance between adjacent
cables is increased. The percentage increase in ) compared to the touching trefoil
arrangement is shown in tables A8.3 and A8.4. The difference is seen to increase with
circuit length and cable separation distance.

Cable 1 Cable 2 Cable 3
1km | 10km | 1km 10 km 1km 10 km
Difference trefoil (3xD) - trefoil (%) | 1.7 7.0 1.6 7.1 1.8 7.5
Difference flat - trefoil (%) 1.3 2.4 1.3 2.4 55 6.7
Difference flat (3xD) - trefoil (%) 4.2 11.0 4.2 111 9.5 171
Table A8.3 Effect of physical cable arrangement on ground return current lgs for 132
kV cables
Cable 4 Cable 5 Cable 6
1km [10km | 1km 10 km 1km 10 km
Difference trefoil (3xD) - trefoil (%) 11 3.6 15 6.0 1.7 6.7
Difference flat - trefoil (%) 0.2 0.7 0.6 15 1.4 2.4
Difference flat (3xD) - trefoil (%) 14 4.5 2.6 8.1 4.4 10.6

Table A8.4 Effect of physical cable arrangement on ground return current lgs for 11kV
cables

Conclusions:

From figures A8.3 and A8.4, the following can be deduced:-

Touching trefoil is the most effective arrangement in terms of minimising the ground
return current. This is as expected, due to the more symmetrical arrangement and its impact
on maximising mutual coupling effects. The ground return current increases in all cases in
the order touching trefoil, touching flat, 3 x D trefoil and 3 x D flat,

The difference between trefoil and flat arrangements is less than 0.5% of the total and
can be disregarded for most studies,

Increasing the separation between the individual cables generally increases the
ground return current by less than 1% of the total,

The decrease in cable core insulation thickness from 21mm (in older cables) to 15mm
does reduce the ground return current, but by an insignificant amount in relation to other
factors (such as measurement errors) and can be ignored for the majority of cases,

The two dominant factors influencing the ground return current in these studies are
the circuit length and the electrical conductivity of the sheath/screen. The latter is most
visibly seen when comparing the 132kV composite screen (copper and aluminium) against a
similar cable with a lead screen. The ground return current is more than doubled for the
latter. The same effect is apparent with the 11kV cables and cable 4 with its relatively small

Formatted: English (United States)
Formatted: Space After: 18 pt

Formatted: English (United States)
Formatted: English (United States)
Formatted: English (United States)

Formatted: English (United States)
Formatted: Justified, Space After: 18 pt

Formatted: English (United States), Not Expanded by /
Condensed by

Formatted: Normal, Justified, Space After: 18 pt, No bullets

or numbering

Formatted: English (United States)

Formatted: English (United States), Not Expanded by /
Condensed by

Formatted: English (United States)

Formatted: English (United States), Not Expanded by /
Condensed by

Formatted: English (United States)

Formatted: English (United States), Not Expanded by /
Condensed by

Formatted: English (United States)

Formatted: English (United States), Not Expanded by /
Condensed by



[

[

B62
B63

B64
B65
B66

ENA Engineering Recommendation EREC S34
Draft Issue 2 2014
Page 75

screen of 12mm2/cable shows the importance of considering the screen size because the
ground return current can reach almost 54% for this cable,

Tables A8.3 and A8.4 are included for completeness and show the increase in the actual
ground return current with changes in physical arrangement, as a percentage of the ground
return current for the touching trefoil arrangement,
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